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Abstract—Catalytic 1,2-hydroamination of fullerene C60 with primary and secondary amines in the presence 
of Ti, Zr, and Hf complexes gave the corresponding alkyl-, aryl-, and hetarylaminodihydrofullerenes. 

As shown in [1], excess methyl- and dimethyl-
amines add to fullerene C60 at 25°C to form complex 
mixtures of aminodihydrofullerenes. Butylamine reacts 
with fullerene C60 at a ratio of 2 : 1 only in boiling 
toluene (reaction time 30 h) [1]. Reactions of primary 
and secondary amines with C60 were reported [2–4] to 
occur only on heating. Likewise, fullerene C60 takes up 
amino acids and dipeptides at elevated temperature  
[5–7]. Our interest in aminodihydro(C60-Ih)[5,6]ful-
lerenes originates from their application in medicine 
[8, 9] and as sorbents [10] and photosensitizers for 
generation of singlet oxygen [11].  

In continuation of our studies on the development 
of procedures for selective functionalization of carbon 
clusters [12] and with a view to find an efficient pre-
parative synthetic route to aminodihydrofullerenes, we 
made an attempt to accomplish catalytic hydroamina-
tion of C60 with primary and secondary amines in the 

presence of transition metal complexes (Fe, Co, Mn, 
Pd, Ti, Zr, Hf) that are widely used to catalyze trans-
formations of unsaturated compounds. Prior to our 
study no data have been reported on catalytic methods 
of synthesis of aminodihydrofullerenes. 

As primary and secondary amines we selected 
hexylamine, 2-aminobutan-1-ol, aniline, propane-1,2-
diamine, N-(2-aminoethyl)ethane-1,2-diamine, diethyl-, 
diallyl-, dicyclohexyl-, and diphenylamines, piper-
idine, morpholine, and 6,7-dimethoxy-1,2,3,4-tetrahy-
droisoquinoline. In order to obtain the corresponding 
monoadducts with fullerene, the hydroamination was 
performed with equimolar amounts of the reactants. 

The reaction of 2-aminobutan-1-ol with C60 in the 
presence of Cp2MCl2 as catalyst (20 mol %; M = Ti, 
Zr, Hf; toluene, 20°C, 48 h) gave 1-(2-hydroxybutyl-
amino)-1,9-dihydro(C60-Ih)[5,6]fullerene (Ia) whose 
yield exceeded 90% (Scheme 1). No reaction occurred 
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[M] = Cp2ZrCl2, Cp2TiCl2, Cp2HfCl2; R = MeCH2CH(OH)CH2 (a), C6H13 (b), Ph (c);  
R' = Et (a), CH2=CHCH2 (b), cyclo-C6H11 (c), Ph (d). 
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Scheme 2. 
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in the presence of complexes and salts derived from 
other transition metals [Ni(acac)2, Pd(acac)2, Fe(acac)3, 
TiCl4, Cp2Fe, MnCl2, CoCl2, FeCl3, ZrCl4] or in the 
absence of a catalyst. When the amount of Cp2MCl2 
(M = Ti, Zr, Hf) was smaller than 20 mol %, the yield 
of Ia decreased. 

Compound Ia displayed in the UV spectrum an ab-
sorption maximum at λ 253 nm, which is consistent 
with the known data for aminodihydrofullerene deriva-
tives [1, 13]. In the 13C NMR spectrum of Ia, sp3-hyb-
ridized carbon atoms in the fullerene sphere resonate at 
δC 61.11 and 74.43 ppm, and signals in the region  
δC 128–152 ppm correspond to fullerene sp2-carbon 
atoms. The MALDI TOF mass spectrum of adduct Ia 
contained the molecular ion peak with m/z 809 [M]+, 
which indicated addition of one amine molecule to C60.  

Under the above conditions (20 mol % of Cp2TiCl2, 
20°C, 48 h), hydroamination of C60 with hexyl-, di-
ethyl-, diallyl-, and dicyclohexylamines resulted in the 
formation of 90–95% of compounds Ib and IIa–IIc 
(Scheme 1). The optimal conditions for the hydro-
amination of C60 with aromatic amines, such as aniline 
and diphenylamine, were as follows: 20 mol % of 
Cp2HfCl2, 150°C, 9 h; these conditions ensured amino-
dihydrofullerenes Ic and IId to be obtained in ~80 and 
~75% yield, respectively. In the presence of Cp2TiCl2 
or Cp2ZrCl2 (20 mol %) instead of Cp2HfCl2, other 
conditions being equal (150°C, 9 h), the yield of Ic and 
IId fell down to ~40%. 

Heterocyclic amines, namely piperidine, morpho-
line, and 6,7-dimethoxy-1,2,3,4-tetrahydroisoquino-
line, reacted with an equimolar amount of C60 in the 
presence of Cp2MCl2 (M = Ti, Zr, Hf) to produce  
the corresponding 1-substituted 1,9-dihydro(C60-Ih)-
[5,6]fullerenes IIIa, IIIb, and IV in 75–90% yield 
(Scheme 2). Hydroamination of C60 with excess piperi-
dine or morpholine without a catalyst led to the forma-
tion of a complex mixture of aminofullerenes [9, 14]. 

Unlike monoamines, Cp2TiCl2-catalyzed addition 
of 1,2-diamines [propane-1,2-diamine and N-(2-amino-
ethyl)ethane-1,2-diamine] to C60 (20 mol % of the 
catalyst, 20°C, 48 h) afforded ~90% of piperazine 
derivatives V and VI (Scheme 3). As in the above 
cases, no reaction occurred without a catalyst (20°C, 
48 h). Presumably, the cycloamination process is 
accompanied by oxidative deprotonation [15], which 
favors formation of piperazinofullerenes V and VI 
having no hydrogen atoms on the fullerene sphere. 

According to the data of [16–19], noncatalytic 
addition of primary and secondary aliphatic amines to 
electron-deficient fullerene C60 involves initial electron 
transfer from the nucleophile to give radical ion pair, 
and the subsequent proton transfer from the nitrogen 
atom to 6,6-carbon atom of fullerene leads to 1,2-hy-
droamination products. Presumably, catalytic addition 
of primary and secondary amines to C60 follows  
a scheme analogous to that proposed previously for 
hydroamination of 1,3-dienes [20] and olefins [21] in 
the presence of transition metal complexes (Scheme 4). 
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M = Ti, Zr, Hf; L is a ligand. 
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Scheme 4. 

The developed procedure for catalytic addition of 
primary and secondary amines to C60 ensures prepara-
tion of various amino-substituted dihydrofullerenes 
with high yield and selectivity, thus opening wide 
prospects in using these compounds in practice.  

EXPERIMENTAL 

Commercial (C60-Ih)[5,6]fullerene with a purity of 
99.5% (Razuvaev Institute of Organometallic Chem-
istry, Russian Academy of Sciences) was used. Toluene 
was dried over metallic sodium and was distilled just 
before use. The reaction mixtures were analyzed by 
gel-permeating liquid chromatography on an Altex-330 
chromatograph (USA) equipped with an UV detector 
(λ 313 nm) and a 250 × 8-mm metal column packed 
with PL gel 100 Å (grain size 5 μm); eluent toluene, 
flow rate 0.2 ml/min; components were separated at 
room temperature. The IR spectra were recorded in 
KBr on a Specord 75IR spectrometer. The UV spectra 
were measured from solutions in chloroform on 
Specord M-40 and Specord M-80 spectrophotometers. 
The 1H and 13C NMR spectra were obtained on JEOL 
FX-90Q (90 and 22.5 MHz, respectively) and Bruker 
AM-300 (300.13 and 75.46 MHz, respectively) spec-
trometers using CDCl3 or CS2 as solvent. The mass 
spectra were run on a MALDI Voyager-D STR TOF 
instrument. 

Addition of primary and secondary amines to 
fullerene C60. A glass reactor or a 17-ml metal finger-
like high-pressure reactor was charged with a freshly 
prepared solution of 0.01 mmol of C60 in 10 ml of 
toluene, 0.0105 mmol of the corresponding amine, and 
0.002 mmol of Cp2MCl2 catalyst (M = Ti, Zr, Hf), and 
the mixture was stirred for 9–48 h at 20–150°C. Prod-
ucts I–VI were separated from unreacted fullerene by 
column chromatography on silica gel L (100–250 μm) 
using hexane–chloroform (6 : 1) as eluent. 

1-(1,9-Dihydro(C60-Ih)[5,6]fulleren-1-ylamino)-
butan-2-ol (Ia). IR spectrum, ν, cm–1: 520, 720, 1030, 
1150, 1260, 1380, 1460, 3330–3380. UV spectrum: 

λmax 253 nm. 1H NMR spectrum, δ, ppm: 1.06 t (3H, 
CH3), 1.16–1.36 m (2H, CH2), 1.58 s (1H, C60H), 
2.59–2.70 m (1H, CH), 3.34 t (2H, CH2), 4.16 d (1H, 
NH), 4.16 t (1H, OH). 13C NMR spectrum, δC, ppm: 
12.85, 26.85, 56.35, 56.74, 61.11, 74.43, 128–152. 
Mass spectrum, m/z (Irel, %): 809 [M]+ (3), 808 [M – 
H]+ (4), 736 [C60NH2]

+ (38), 762 [C60NHCHCH2]
+  

(6), 720 [C60]
+ (89), 721 [C60 + H]+ (100), 722 [C60 + 

2H]+ (62). 

N-(1,9-Dihydro(C60-Ih)[5,6]fulleren-1-yl)hexan-1-
amine (Ib). IR spectrum, ν, cm–1: 530, 580, 750, 1020, 
1150, 1260, 1480, 3340–3380. UV spectrum: λmax  
257 nm. 1H NMR spectrum, δ, ppm: 0.84 t (3H, CH3), 
1.03–1.12 m (4H, CH2), 1.24–1.30 m (4H, CH2), 1.59 s 
(1H, C60H), 2.72 t (2H, CH2), 7.28 t  (1H, NH).  
13C NMR spectrum, δC, ppm: 14.19, 22.78, 29.78, 
31.51, 33.36, 46.23, 54.73, 74.46, 130–153. 

 N-(1,9-Dihydro(C60-Ih)[5,6]fulleren-1-yl)aniline 
(Ic). IR spectrum, ν, cm–1: 520, 730, 1380, 1470, 2840, 
2910, 3350. UV spectrum: λmax 253 nm. 1H NMR 
spectrum, δ, ppm: 1.56 s (1H, C60H), 6.71 d (2H, 
Harom), 6.83 t (1H, Harom), 7.02 t (2H, Harom), 8.27 s 
(1H, NH). 13C NMR spectrum, δC, ppm: 56.29, 73.68, 
115.09, 120.99, 129.06, 147.43, 128–157. 

N-(1,9-Dihydro(C60-Ih)[5,6]fulleren-1-yl)-N-
ethylethanamine (IIa). IR spectrum, ν, cm–1: 530, 
720, 1160, 1270, 1380, 1470. UV spectrum (CHCl3): 
λmax 254 nm. 1H NMR spectrum, δ, ppm: 1.06 t  
(6H, CH3), 1.58 s (1H, C60H), 2.51 q (4H, CH2).  
13C NMR spectrum, δC, ppm: 12.69, 45.02, 56.35, 
74.63, 137–157. 

N-Allyl-N-(1,9-dihydro(C60-Ih)[5,6]fulleren-1-yl)-
prop-2-en-1-amine (IIb). IR spectrum, ν, cm–1: 520, 
720, 1180, 1370, 1430, 1640, 3080. UV spectrum:  
λmax 255 nm. 1H NMR spectrum, δ, ppm: 1.56 s (1H, 
C60H), 3.36 d (4H, CH2), 5.23 d (4H, CH2), 5.52– 
5.65 m (2H, CH). 13C NMR spectrum, δC, ppm: 56.42, 
58.73, 74.85, 116.53, 133.04, 135–143. 

N-Cyclohexyl-N-(1,9-dihydro(C60-Ih)[5,6]fulleren-
1-yl)cyclohexanamine (IIc). IR spectrum, ν, cm–1: 
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520, 720, 1340, 1400, 1485. UV spectrum: λmax  
258 nm. 1H NMR spectrum, δ, ppm: 1.20–1.30 m 
(12H, CH2), 1.53 q (8H, CH2), 1.59 s (1H, C60H), 
3.05–3.13 m (2H, CH). 13C NMR spectrum, δC, ppm: 
22.89, 32.71, 56.55, 61.25, 74.46, 137–156. Mass 
spectrum, m/z (Irel, %): 901 [M]+ (1), 734 [C60H]+ (3), 
735 [C60NH]+ (1.7), 736 [C60NH2]

+ (5), 720 [C60]
+ 

(91), 721 [C60 + H]+ (100), 722 [C60 + 2H]+ (62). 

N-(1,9-Dihydro(C60-Ih)[5,6]fulleren-1-yl)- 
N-phenylaniline (IId). IR spectrum, ν, cm–1: 520, 730, 
1380, 1460, 2840, 2910. UV spectrum; λmax 258 nm. 
1H NMR spectrum, δ, ppm: 1.59 s (1H, C60H), 6.85 d 
(4H, Harom), 6.95 t (2H, Harom), 7.30 t (4H, Harom).  
13C NMR spectrum, δC, ppm: 56.42, 74.10, 117.86, 
121.09, 129.39, 154.20, 130–161. Mass spectrum, m/z 
(Irel, %): 831 [M]+ (2.5), 887 [M – 2H]+ (5), 736 
[C60NH + H]+ (30), 737 [C60NH + 2H]+ (36), 720 [C60]
+ (94), 721 [C60 + H]+ (100), 722 [C60 + 2H]+ (84). 

N-(1,9-Dihydro(C60-Ih)[5,6]fulleren-1-yl)piperi-
dine (IIIa). IR spectrum, ν, cm–1: 520, 760, 1380, 
1470. UV spectrum: λmax 257 nm. 1H NMR spectrum, 
δ, ppm: 1.42–1.53 m (4H, CH2), 1.58 s (1H, C60H), 
2.61 t (2H, CH2). 

13C NMR spectrum, δC, ppm: 25.39, 
25.97, 51.70, 56.42, 74.62, 128–133. Mass spectrum, 
m/z (Irel, %): 805 [M]+ (6.8), 720 [C60]

+ (100), 721  
[C60 + H]+ (80). 

N-(1,9-Dihydro(C60-Ih)[5,6]fulleren-1-yl)morpho-
line (IIIb). IR spectrum, ν, cm–1: 520, 720, 1120, 1140, 
1380, 1420. UV spectrum: λmax 258 nm. 1H NMR 
spectrum, δ, ppm: 1.41 s (1H, C60H), 3.05 t (4H, CH2), 
3.62 t (4H, CH2). 

13C NMR spectrum, δC, ppm: 45.09, 
56.42, 70.22, 74.03, 137–161. Mass spectrum, m/z  
(Irel, %): 807 [M]+ (15), 734 [C60H]+ (16), 735 [C60NH]+ 
(37), 720 [C60]+ (100), 721 [C60 + H]+ (83), 722  
[C60 + 2H]+ (67). 

2-(1,9-Dihydro(C60-Ih)[5,6]fulleren-1-yl)-6,7-di-
methoxy-1,2,3,4-tetrahydroisoquinoline (IV). IR 
spectrum, ν, cm–1: 520, 760, 790, 1020, 1100, 1260, 
1380, 1470, 2840, 2910. UV spectrum: λmax 257 nm. 
1H NMR spectrum, δ, ppm: 1.42 s (1H, C60H), 2.70 t 
(2H, CH2), 3.05 t (2H, CH2), 3.79 s (6H, CH3), 3.90 s 
(2H, CH2), 6.62 s (2H, CH). 13C NMR spectrum, δC, 
ppm: 30.76, 43.04, 49.52, 56.26, 56.42, 74.56, 109.69, 
112.10, 126.49, 132.03, 147.20, 135–159. Mass spec-
trum, m/z (Irel, %): 913 [M]+ (10), 735 [C60NH]+ (12), 
777 [C60NHCH2CH2CH2]

+ (11), 851 [M – 2 OCH3]
+ 

(13.5), 883 [M – 2 CH3]
+ (9), 720 [C60]

+ (100), 721 
[C60 + H]+ (80). 

5'-Methyl-1' ,4',5' ,6'-tetrahydropyrazino-
[2',3' : 1,9](C60-Ih)[5,6]fullerene (V). IR spectrum, ν, 
cm–1: 530, 720, 1030, 1150, 1380, 1400, 1460, 3320–
3370. UV spectrum: λmax 428 nm. 1H NMR spectrum, 
δ, ppm: 1.01 d (3H, CH3), 2.26 d (2H, NH), 2.96 t (2H, 
CH2), 3.38–3.46 m (1H, CH). 13C NMR spectrum, δC, 
ppm: 16.37, 54.50, 56.29, 83.15, 132–164. Mass spec-
trum, m/z (Irel, %): 792 [M]+ (21), 777 [M – CH3]

+  
(16), 720 [C60]+ (100), 721 [C60 + H]+ (97), 722  
[C60 + 2H]+ (56). 

2-(1',4',5',6'-Tetrahydropyrazino[2',3':1,9]- 
(C60-Ih)[5,6]fulleren-1'-yl)ethanamine (VI). IR spec-
trum, ν, cm–1: 520, 720, 1040, 1380, 1470, 2850, 2910, 
3340, 3400. UV spectrum: λmax 428 nm. 1H NMR 
spectrum, δ, ppm: 1.80 t (3H, NH, NH2), 2.32 t (2H, 
CH2), 2.65–2.78 m (2H, CH2), 3.46 q (2H, CH2), 4.58 t 
(2H, CH2). 

13C NMR spectrum, δC, ppm: 42.71, 45.35, 
54.53, 56.32, 84.58, 85.63, 137–160.  
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